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J. Phys. A: Math. Gen. 15 (1982) 2201-2207. Printed in Great Britain 

Equivalence of various pseudopotential approaches for 
Einstein-Maxwell fields 

Dietrich Kramer 
Sektion Physik, Friedrich-Schiller-Universitat Jena, DDR-6900 Jena, Max-Wien-Platz 1, 
GDR 

Received 4 November 1981 

Abstract. In the literature, various systems of linear eigenvalue equations from which the 
Einstein-Maxwell equations for stationary axisymmetric exterior fields follow as the 
integrability conditions were derived. In the present paper, these linear systems are shown 
to be equivalent; the explicit transformations mapping one form to another are given. 

1. Introduction 

Some (systems of) nonlinear differential equations have the remarkable property that 
they can be obtained as the integrability conditions of appropriate linear equations 
including a spectral parameter, t. Frequently it is possible to find special solutions to 
these linear eigenvalue equations. For instance, the assumption that only (simple) 
poles in the complex t plane occur leads to the so-called soliton solutions. 

For the Einstein equations for stationary axisymmetric vacuum fields, soliton 
solutions have been given hdependently by several authors (Neugebauer 1979,1980, 
Belinsky and Zakharov 1978, 1979, Harrison 1978). Following a series of papers by 
Kinnersley (1977) and Kinnersley and Chitre (1977, 1978a, b), Hauser and Ernst 
(1979, 1980) reformulated the problem of constructing finite elements of an internal 
symmetry group, in terms of a homogeneous Hilbert problem with respect to a linear 
integral equation. Cosgrove (1981) has shown that the soliton solutions are included 
in the Hauser-Ernst formalism. 

Hauser and Ernst (1979,1980) also generalised their method to include electro- 
magnetic fields. Aleksejev (1980a) constructed N-soliton solutions of the Einstein- 
Maxwell equations. In all these investigations linear equations which imply the 
nonlinear field equations play an important role. Different authors introduced different 
(pseudo-) potentials: the fl potentials (3 2, Kramer and Neugebauer 1981), the F 
potentials (3 3, Hauser and Ernst 1980, Jones 1980, Kinnersley and Chitre 1977, 
1978a, b), and the T potentials (0 5 ,  Aleksejev 1980a). It is the purpose of this paper 
to reveal the relationships between these quantities, and the equivalence of the 
corresponding linear eigenvalue equations. In particular, it turns out that the elec- 
trovac solution-generating transformation given by Cosgrove (1981) is contained in 
the result of Aleksejev (1980a), for N = 1. 
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The space-time metric is taken in the standard form 

ds2 =f-'[eZk(dp2 + dz') + p 2  dcp'] -f(d7 - w  dq)2 

= f - '  e2& d l  d c +  fAB dxA dxB A, B = 1 , 2  (1) 

where f ,  k, and w are independent of the coordinates x A  = (7, cp). Throughout this 
paper a bar denotes complex conjugation. 

2. The potentials 

By means of the Wahlquist-Estabrook (1975) method, Kramer and Neugebauer 
(198 1) derived linear equations which imply the Ernst equations for stationary axisym- 
metric Einstein-Maxwell fields. In matrix notation, these linear equations can be 
written in the form 

SZ,, = (Xi + A  Y1)n a,,-= (X,+A-'Y2)R (2) 

where 

and the 3 x 3 matrices X,, Y, (a = 1,2)  are given by 

B, 0 Ea 0 B,  0 
Xu =(  0 A,  0 j "=("e 0, (4) 

-D, 0 $(A,+B,)  

These eigenvalue equations contain the spectral parameter t which does not enter the 
matrices Xu and Y,. For the definitions of A,, B, etc in terms of the Ernst potential 
%', the scalar electromagnetic potential CP, and their derivatives, we refer the reader 
to our paper. n = n(l, t) can be considered as a 3 x 3 matrix array of three indepen- 
dent vector solutions of (2). A first integral of (2) is 

det SZ = ~ ( t ) f ~ ' ~  c ( t )  =constant. ( 5 )  

Because of the reality of the Einstein-Maxwell field the relation 

q = [ !  -1 0 q 
n+qn = C( t ) f  

0 -1 

holds, where C ( t )  is a constant 3 x 3 matrix and n'(A) is to be understood as the 
Hermitian conjugate of R(l /h) .  For A = *l, the equations (2) can be integrated and 
the gauge freedom n-*ng(t) can be chosen such that, e.g. 

In the case of electrostatics, the linear system (2) reduces to the 2 x 2 problem 

U,, = (PI + AQ1)w c= (p2 + A -' Q ~ ) ~  (8) 
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with the A-independent 2 x 2 matrices 

1 0  I (9) 1 A, +iE, 
Pa =-( 2 0  A, - iE, ) Qa=?(Aa-iEa 0 

The striking similarity of (8) with the corresponding equations in the vacuum case 
mirrors the Bonnor (1961) transformation between the axisymmetric stationary 
vacuum and electrostatic solutions. Any solution to (8), with components p, T, implies 
the vector solution of (2) with the components + = p 2 +  72, x = 2p7, (T = i(p - T ), 
which can be taken as the first column of the matrix. For the Reissner-Nordstrom 
metric, 

2 2  

e a=- R - m  g=- 
R + m  R + m  

R = $(r+ + r-)  

we obtain the potentials 

[M+(mR + d 2 ) - e 2 ( R 2 - d 2 ) ]  * = d2(R + m)’ 

1 
X = d ( R + m ) M -  [M+- (mR + d 2 ) ]  (11) 

i e (R2-d2)1’2  
d2(R + m)2 (T= 

A - A  1+A1 A - A  l + A 2  

A - A I  1+A2 
M, = $(m + d ) ( R  + d ) ( 2 )  (-) *$(m - d ) ( R  - d ) ( L )  A - &  (-) 1+A1 . 
A I ,  A 2  are the special values of A for t = *d /2 ,  hence 

R - d  

For A = 1, the potentials 4, x, (T agree with the first column in (7). 

3. The F potentials 

In the metric (l), the Einstein-Maxwell equations can be cast into the form (Kinnersley 
and Chitre 1977) 

(13) 
1 1 
P P 

(PA,< = --fAB(PB,l (PA,I’ - f  A ~ Q B , f  

1 1 

P P 
H A ~ . r  = --fAcHcB,c H A  B,f  = - f AcH B,r. 

The indices are raised and lowered according to the usual rules 

AB B 0 1  
V A = E  (PB Q A = V  &BA 

Accordingly, f A B  is given by the 2 x 2 matrix 
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The potentials q A  = A A  +iBA are complex combinations of the components A A  of 
the electromagnetic 4-potential and of potentials B A  defined by 

(17) 
1 i 
P P 

AA,C = - - f A a B , [  BA,[ =- f A d B , C  

The potentials HAB in (14) are determined by 

HAB = f A B  + iRAB -GAVB + EA& 

RAB,[ = ' f A d f C B , t  -2ABAC,t - 2 B a C , [ )  (19) 

( 2 0 )  &=GAQ ,t K,F GAQ ,c 
The Ernst potential 8 and the electromagnetic potential @ are the components 8 = H 1  
and @ = rpl .  In our calculations we made use of the relations 

P 
A A 

(21) 8,'= f , [ + - f 2 w , [ - 2 6 @ , [  

(22) 1 2  8 ,c - = f  ,t - - - f  O , f - 2 6 @ , p  

H12 - HZl = 2iz + 2K ( 2 3 )  
which are a consequence of equations (13)-(20). It is convenient to introduce the 
3 x 3 matrix 

1 
P 

P 

where LB is defined by 

(25) L B , [  = @AHA&[ 
Arranging the F potentials (Hauser and Ernst 1980, Jones 1980, Kinnersley and 
Chitre 1977, 1978a, b) in the 3 x 3 matrix 

- A  L B , ~ =  QAH B.F. 

F = (  

the linear equations for F read 

Here t again denotes a complex constant parameter; H is independent of t, but 
F = F(5, t). The complex conjugate of F ( &  denoted by F*(t), satisfies the 
equations 

The integrability condition of (27) leads to the second-order equation 

(29) 
1 

H , , , - + - ( H , ~ ~ , [ - H , [ H , 3  = O  
4P 
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for H. The (2, 1)- and (2,3)-components of this relation are just the field equations 
for 8 and Cp. This can be checked using equations (13)-(25). 

4. The relationship between the F and potentials 

A straightforward calculation yields the explicit form 

P%C P(1 - P G  -4@,A P% 

4%,C 4(1 -P& -4%) 4% 

q = -2(p&++2) 

of the matrix in (27), where the abbreviations 

p = f-'p + w  

have been used. Clearly, one has det (&) = 0. 
With (30), the equations (27a) take the form 

Fl1.l =pF2i,r F ~ ~ . ~  = 4F21,C 

In terms of the new quantities 

R~ = F ' ~  -pFZ1 R2 = F21 R3= F31-qF21 (33) 

Ri . r=-p9~R2  R3.C = -4,rRz 

the equations (32) read 

(34) 

This form of the equations enables us to read off the generalisation of the known 
relation between fl and F in the vacuum case (Cosgrove 1980). Equation (27b) can 
be treated in the same manner. The final result of our calculations is the transformation 

and g( t )  is a constant gauge matrix. Thus we have shown the equivalence of the linear 
systems (2) and (27). Note that the transformation matrix in (35) includes metric 
functions, electromagnetic potentials, and the spectral parameter t. 

The transformation (35) maps the equations ( 9 ,  (6) into the corresponding relations 
for the F potentials (see Hauser and Ernst 1980). The R potentials (11) of the 
Reissner-Nordstrom metric are related by (35) to the F potentials given by Jones 
(1980). 
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5. The W potentials 

Starting with the eigenvalue equations 

Vya = A:u,bV x a  = (p, 2) 
(37) 

w being the constant spectral parameter, Aleksejev (1980a) constructed N-soliton 
solutions of the Einstein-Maxwell equations. The relationship between the linear 
systems (27) and (37) is given by 

1 
2t 

W=-. H = - 1  [ 1 0 1 -11 o u - 1  [ ," 1 0 0 .=I-: a -!)YG(f) 

(38) 
From (24) and (38) it follows that U has the form 

With the aid of the transformations (35) and (38) it can be shown that Aleksejev's 
equation 

Q+ W V  = K ( t )  = constant (40) 

is equivalent with (6). To generate new solutions (represented by Y') from an initial 
solution (Q), Aleksejev (1980a) assumed the special structure 

where the 3 x 3  matrices RI are independent of w. In terms of the F potentials, the 
ansatz (41) leads, for N = 1, to the formula 

t ( s  -J) F(J)h ogF- ' (s)  F(t)  = (I+- 
s ( t  -8)  * (gF-'(s)F(S)h) 

which turns out to be identical (up to gauge transformation) with the transformation 
found by Cosgrove (1981). The value in the complex t plane at which x in (41) has 
a simple pole is denoted by s. (x-' has a pole at t = S.) The symbol 0 means dyadic 
product. The constant row and column vectors g and h, respectively, are related by 

g = kG-'(s) h = G(J)fC(-'(J)k+ (43) 

k being a constant row vector. In particular, the choice 

0 1 0  0 -1 0 

0 0 1  0 2il t  
(44) 
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(special HE gauge, see Cosgrove 1981) implies 

h3 = g3. h - L ' - -  h - is-- 
1 - 2 w 2  2 - -21sg1 

From (27) and (42) one obtains the H matrix 

i(s-J)  F(S)hOgF-'(s)  H ' = H + -  
sf * (gF- ' (s)F (S) h ) 

(45) 

of the new solution. Cosgrove (1981) derived the same result using the Hauser-Ernst 
(1980) formulation in terms of a homogeneous Hilbert problem. 

In the modified version of the N-soliton solution (Aleksejev 1980b), the degenerate 
matrices RI in (41) have the form 

RI = nr Om1 + rI OS[. (47) 
For N = 1, the corresponding transformation, when applied to flat space-time, does 
not give a more general solution; like (46) it leads again to the Kerr-Newman solution. 

6. Summary 

The linear equations (2), (27), (37) for the (pseudo-) potentials n, F and T, respec- 
tively, are equivalent. The various formulations are related by the transformations 
(35) and (38). 
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